IENT-CNR
[ I — — —  —  — -

Randomized Algorithms for Systems
and Control: Theory and Applications

Roberto Tempo
IEIT-CNR

Politecnico di Torino
roberto.tempo@polito.it

NATO Lecture Series SCI-195 @RT 2008

IEI\T-CI\;R
[  — — i o o o o o |

m Additional documents, papers, etc, please consult
http://staff.polito.it/roberto.tempo/

m Questions may be sent to
roberto.tempo@polito.it

NATO Lecture Series SCI-195 @RT 2008

IEIIT-CNR RerermC%

[ o e

m R. Tempo, G. Caldfiore and F. Dabbene, “Randomized
Algorithms for Analysis and Control of Uncertain Systems,”
Springer-Verlag, London, 2005

m R, Tempo and H. Ishii, “Monte Carlo and Las Vegas
Randomized Algorithms for Systems and Control: An
Introduction,” European Journal of Control, Vol. 13, pp. 189-
203, 2007

m RACT: Randomized Algorithms Control Toolbox for Matlab

http://ract.sourceforge.net

NATO Lecture Series SCI-195 @RT 2008

S Overview
[ ) — — O — .y |

Preliminaries

Randomized Algorithms for Analysis

Probabilistic Robust Synthesis

Randomized Algorithms for Optimal Control (LQR)
Extensions

Applications: Probabilistic Control of Mini UAVs
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Preliminaries
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o Randomized Algorithms (RAS)

[ f —  E— o B — i i n  w a

m  Randomized algorithms are frequently used in many
areas of engineering, computer science, physics,
finance, optimization,...but their appearance in systems
and control is mostly limited to Monte Carlo
simulations...

m  Main objective of this mini-course: Introduction to
rigorous study of RAs for uncertain systems and
control, with specific applications

NATO Lecture Series SCI-195 @RT 2008
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Randomized Algorithms (RAS)

IENIT-CNR
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m  Combinatorial optimization, computational geometry

m Examples. Data structuring, search trees, graph

algorithms, sorting (RQS), ...
= Motion and path planning problems
m  Mathematics of finance: Computation of path integrals

m  Bioinformatics (string matching problems)
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Uncertainty
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m  Uncertainty has been always a critical issue in control
theory and applications

m  First methods to deal with uncertainty were based on a
stochastic approach

m  Optimal control: LQG and Kalman filter

m Since early 80's aternative deterministic approach
(worst-case or robust) has been proposed

@RT 2008 8
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Robustness
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m  Major stepping stone in 1981: Formulation of the H_,
problem by George Zames

m  Various “robust” methods to handle uncertainty now
exist:  Structured singular  values, Kharitonov,
optimization-based (LMI), I-one optimal control,
quantitative feedback theory (QFT)
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Robustness
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m Late80'sand early 90's: Robust control theory became
awell-assessed area

m  Successful industrial applications in  aerospace,
chemical, electrical, mechanical engineering, ...

m  However, ...
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Limitations of Robust Control - 1
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m Researchers realized some drawbacks of robust control

m Consider uncertainty A bounded in a set 8 of radius p.
Largest value of p such that the system is stable for all
A € Biscalled (worst-case) robustness margin

m Conservatism: Worst case robustness margin may be
small

m Discontinuity: Worst case robustness margin may be

discontinuous wrt problem data

@RT 2008 1
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Limitations of Robust Control - 2
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m  Computational Complexity: Worst case robustness is
often NP-hard (not solvable in polynomial time unless
P=NP)
m  Various robustness problems are NP-hard
— dtatic output feedback
— structured singular value
— stability of interval matrices

IENT-CNR

[1] V. Blondel and JN. Tsitsiklis (2000)
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Conservatism and Complexity
Trade-Off
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m Uncertain or control design parameters often enter into
the system in a nonlinear/nonconvex fashion

m To avoid complexity issues (or just to find a solution of
the problem) relaxation techniques such as SOS are used

m Study issues about the accuracy of the approximation
introduced and related complexity

NATO Lecture Series SCI-195
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o Different Paradigm Proposed
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m New paradigm proposed is based on uncertainty
randomization and leads to randomized algorithms for
analysis and synthesis

m Within this setting a different notion of problem
tractability is needed

m Objective: Breaking the curse of dimensionalityl!

[1] R Bellman (1957)
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Probability and Robustness
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m The interplay of Probability and Robustness for control
of uncertain systems

m Robustness: Deterministic uncertainty bounded

m Probability: Random uncertainty (pdf is known)

m Computation of the probability of performance

m Controller which stabilizes most uncertain systems

NATO Lecture Series SCI-195 @RT 2008 15
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m We obtain larger robustness margins at the expense of a
small risk
m We study the probability degradation beyond the
robustness margins

m Computational complexity is generally not an issue:
Randomized agorithms are low complexity

NATO Lecture Series SCI-195 @RT 2008 16

Uncertain Systems
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M(s) System A Uncertainty

= A belongs to a structured set 8,
— Parametric uncertainty q
— Nonparametric uncertainty A,
— Mixed uncertainty

NATO Lecture Series SCI-195 @RT 2008 17
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m Worst case model: Set membership uncertainty

m Theuncertainty A is bounded in aset B,
Ae 8B,

m Real parametric uncertainty g=[d,...,q,] € R’
g e [gq7]
m Nonparametric uncertainty
A € {Ae R™: || Al

NATO Lecture Series SCI-195 @RT 2008 18
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A

w M z

m Uncertainty A is bounded in a structured set B,
m z= 7 (M,A) w, where 7 (M,A) isthe upper LFT

NATO Lecture Series SCI-195 @RT 2008 i)

. Objective of Robustness
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m Objective of robustness: To guarantee stability and
performance for all

Ae B,

m Different probabilistic paradigm based on uncertainty
randomization of A within 8,
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Example: Flexible Structure - 1
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m Mass spring damper model

m Real parametric uncertainty affecting stiffness and
damping
m Complex unmodel ed dynamics (nonparametric)

‘1 ‘z ‘3 |A |5 's
i I I i i I
L L L L o L
i
(0 0t i} ) i e
k k ks ks ks ks
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Flexible Structure - 2
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m M-A configuration for controlled systems and study stability of

M(9)=C(sl—-A"'B
qls 0 O
A= 0 qls O
0y, G € R 0 0 A

Aje C4
Ae B, ={AeD:c(A)<p}
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Probability Degradation Function
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- Probabilistic Model
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m Probability density function associated to 8,

m We now assumethat A isarandom matrix with given
density function f,(A) and support B,

m Example: A isuniformin 8,

NATO Lecture Series SCI-195 @RT 2008 24




- Uniform Density
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m Takef,(A)=U[B,] (uniform density within B,,)
1

ulg, 1=lvoi(g,) "A<H

0 otherwise

m |nthis case, for asubset Sc B,

_ 9w
Priae )= ai8.) " vol(3,)

NATO Lecture Series SCI-195 @RT 2008 P
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[ ) — — O — .y |

m In classical robustness we guarantee that a certain
performance requirement is attained for all Ac 8,,

m This can be stated in terms of a performance function

J=J3()

m Examples: H_, performance and robust stability
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Example: H_, Performance - 1
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m Compute the H,, norm of the upper LFT #(M,A)
J(2) = | 7, A)l..
m For given >0, check if
J(4) <y

fordl Ain 8,
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Example: H_, Performance - 2
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m Continuous time SISO systems with real parametric
uncertainty q with upper LFT

ZMA) = 7 (M,q) =

0.59,9,5+10°q,
(10° + 0.05q,)s2 + (0.00102 + 0.5q,)s+ (2-10 ° + 0.5q7)

whereq, € [0.2, 0.6] and ¢, € [105,3:10%]
m Letting J(g) = || #,(M,9) ||, we choose y=0.003
m Check if J(g)<y for all qintheseintervals
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Example: #_ Performance - 3
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m Theset of q,, g, for which J(q)<y is shown below

X 10

o6 065

Ch
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ExamplelY: Robust Stability - 1
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m Consider the closed |oop uncertain polynomial
p(sa) =
(11 +60, +60, + 200, )+ (G + G + s+ (g + G +1)2 + &
whereq, € [0.3,2.5], g, € [0,1.7] and r=0.5
m Check stability for all gintheseintervals

[1] G. Truxa (1961)

NATO Lecture Series SCI-195 @RT 2008 30




- Example: Robust Stability - 2
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m Set of unstable polynomials

17

%

0

03 25

q;
m Taking r=0 the unstable set reduces to a singleton

NATO Lecture Series SCI-195 @RT 2008 31

Good and Bad Sets
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= We define two subsets of B,

IENT-CNR

Agpoa ={A1J(A) <Y} = By
Ay ={A1JA)>7} =8,

B Agooq iSthe set of A’ssatisfying performance
m Measure of robustnessis

Vol (A gy )= [ 02

A good

NATO Lecture Series SCI-195 @RT 2008 32
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Taking small r
A 17 A 17
9, 9,
0 | o |
03 o 25 03 a ‘ 25
Agood Agood
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Probabilistic Robustness Measure
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m In worst-case analysis we compute y such that al A
satisfy performance. Equivalently, we evaluate Y such
that

Agood =5

m |n aprobabilistic setting, we are satisfied if the ratio

Vol (A goog)
vol(8B, )
iscloseto one
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Eim.cnR Probability of Performancelll
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m We define the probability of performance as
p, =Pr{J(A) <v}
m Noticethat, if f,(A) isuniform, then

p — vol (Agood )
"= Vol(8,)
[1] R.F. Stengel (1980)
NATO Lecture Series SCI-195 @RT 2008 36
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Example: Closed-Form Computation

 — — O —  — i)

= For Truxal's example, we compute p, in closed-form

= For uniform distribution, we have

VOI(Aypg) = 3.74 -1 12
vol(B,) = 3.74

NATO Lecture Series SCI-195
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m For given performance level vy, check whether

= Compute the probability of performance p,

JA) <y

foral AinB,

NATO Lecture Series SCI-195
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P2: Worst-Case Performance
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m Find J,, such that

Jax = ggng(A)

m Compute the worst case performance (or its

probabilistic counterpart)

IENT-CNR
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Randomized Algorithms
for Analysis
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Randomized Algorithm: Definition
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m Randomized Algorithm (RA): An agorithm that makes
random choices during its execution to produce a result

m Example of a“random choice” isacoin toss

IEIIT-CNR

heads or tails

@RT 2008 41
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Randomized Algorithm: Definition
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m Randomized Algorithm (RA): An agorithm that makes
random choices during its execution to produce a result

m For hybrid systems, “random choices’ could be
switching between different states or logical operations

m For uncertain systems, “random choices” require (vector
or matrix) random sample generation

NATO Lecture Series SCI-195 @RT 2008 a2




- Monte Carlo Randomized Algorithm
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m Monte Carlo Randomized Algorithm (MCRA): A
randomized algorithm that may produce incorrect results,
but with bounded error probability
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o Las Vegas Randomized Algorithm
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m Las Vegas Randomized Algorithm (LVRA): A
randomized algorithm that always produces correct
results, the only variation from one run to another is the
running time

NATO Lecture Series SCI-195 @RT 2008 4

rew  Randomization of Uncertain Systems
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m Consider random uncertainty A, associated pdf and
bounding set B
m A is a (rea or complex) random vector (parametric
uncertainty) or matrix (nonparametric uncertainty)
m Consider a performance function
J(A):B—>R

andlevel y>0
m Define worst case and average performance
Jmax = An;aé( J(A) Jae=EA(J(A))

NATO Lecture Series SCI-195 @RT 2008 5

Example: H_, Performance - 1
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m H_ performance of sensitivity function
B = {A: A=bdiag (Ay,... , Ag) € F"™, G,u(A) < p}
S(sA) = U(1+ P(sA) C(s))
J(A) = [IS(s. )L
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Example: H_, Performance - 2
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m H_, performance of sensitivity function

B = {A: A=bdiag (Ay,... , Ag) € F™™, 5,0 (A) < p}
SsA) = U(1+ P(sA) C(9)
J(2) = IS(s.A)IL.

m Objective: Check if
Jox <Y ad  J <Y

m These are uncertain decision problems

NATO Lecture Series SCI-195 @RT 2008 47
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m We have two problem instances for worst case
performance

‘]max s Y and Jmax > ’Y
and two problem instances for average case performance
‘]a\/e s Y and ‘]a\/e > Y

m Thisleads to one-sided and two-sided MCRA

NATO Lecture Series SCI-195 @RT 2008 48




One-Sided MCRA

One-Sided MCRA: Case 1

IENT-CNR
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m One-sided MCRA: Always provide a correct solution in 1)
one of the instances (they may provide a wrong solution
in the other instance)
m Consider the empirical maximum
3max = max J(AY)
i=1,....N
where Al are random samples and N is the sample size
m Checkif Joo< YO Jpd > ¥ A
N A2 A3 A% A5 A6
NATO Lecture Series SCI-195 @RT 2008 49 NATO Lecture Series SCI-195 @RT 2008 50
One-Sided MCRA: Case 1 One-Sided MCRA: Case 1
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
JA) JA) algorithm provides a correct solution
) it A'/“_:R LIIIITILIIIE
J(A3)
J(A?)
J(ah Jah
A
Al A2 A A% AS A8 Al A2 A8
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IEIIT-CNR One—a‘ dw M CRA: C& 2
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J(A) algorithm may provide a wrong solution
Yo ey
J(A?)
J(AY
A
Al A2 A3

NATO Lecture Series SCI-195 @RT 2008 53

IEIIT-CNR TWO'S| daj M CRA
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m Two-sided MCRA: They may provide a wrong solution
in both instances

m Consider the empirical average
J..= ave J(A)
i=1,...,N

where Al are random samples and N is the sample size
m Checkif Jyes Y Or Jye > 7
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EiToNR Two-Sided MCRA: Case 1

[ o e
algorithm may provide a wrong solution

) )
‘]ave > ,Y > ‘]ave
J(A3)
322 3% ,
) DN
J(Aﬁ)\
A
Al A2 A3 A4 A5 A8
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Two-Sided MCRA: Case 2
[ | | o o o o
algorithm may provide a wrong solution

J(a) A
‘]ave < Y < ‘]ave

J(,Aj)/ J(A“\).\ -
’Y ______________________________
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e Las Vegas Randomized Algorithms
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m We aso have zero-sided (Las Vegas) randomized
algorithms

m Las Vegas Randomized Algorithm (LVRA): Always
give the correct solution

m The solution obtained with a LVRA is probabilistic, so
“aways’ means with probability one

= Running time may be different from one run to another

m We can study the average running time

NATO Lecture Series SCI-195 @RT 2008 57

Discrete Bounding Set
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Consider random uncertainty A, a discrete bounding set
B, given pdf and performance function

e 6 o o6 ¢ o o o o o
o o o o e o e o e o
o o o o e o e o e o
e o e o e o e o o o
e 6 o o o o o o o o
e o e o e o e o e o
o o e o e o e o e o
o o o o e o e o e o
e o e o e o e o e o
® 6 o ¢ o6 o o o o o
Al A2 A3 A% A5 A5 AT AB A9 AlO
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ET-CNR The Las Vegas Viewpoint
[ I E— — — — -y il
m Consider discrete random variables

m The sample space is discrete and MN possible choices
can be made

= Inthe binary case we have 2V
m Finding maximum requires ordering the 2N choices
m LasVegas can be used for ordering real numbers

m Examplee Randomized Quick Sort for sorting red
numbers (classical in computer science)
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Ingredientsfor RAs
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m Assumethat A is random with pdf f,(A) with support 8,

m Accuracy €< (0,1) and confidence 6 < (0,1) be assigned
m Performance function for analysis and level

! !

J=J(8) Y

NATO Lecture Series SCI-195 @RT 2008 60
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e RANdomized Algorithms for Analysis
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m Two classes of randomized algorithms for probabilistic
robust performance analysis

m P1: Performance verification (compute p,)
m P2: Worst-case performance (compute J,,.,,)

m Both are based on uncertainty randomization of A

m Bounds on the sample size are obtained

NATO Lecture Series SCI-195 @RT 2008 o1

o Randomized Algorithms - 2

[ f —  E— o B — i i n  w a
m We estimate p, by means of arandomized algorithm

m First, we generate N i.i.d. samples
AL A2 . AN € B,

according to the density f,

m Weevauate J(AY), J(A?), ..., J(AN)
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o Empirical Probability
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m Construct an indicator function

|(Ai): 1 IfJ(A).S}/
0 otherwise
= Anestimate of p, isthe empirical probability

8 = 137 (4) Nooos
pN_Ni;I(A)_ N

where Ny,oq is the number of samples such that J(A) <y
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m Theempirical probability isareliable estimate if

b, — Py =IPr{I@) <y}-pyl<e
m Find the minimum N such that
Prilp, - pu|<ef21-6

where £€(0,1) and 5 (0,1)
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IENT-CNR ChernOff Bound[l]
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m Forany £€(0,1) and 6 (0,1), if

2
N> 1095
2¢
then a
Pr{‘ P, — Py| < ef21-6
[1] H. Chernoff (1952)
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Comparison Between Bounds
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8r “\ Bernoulli _
\ Bienayme
£of - \ Chernoff -
E - \
3 \
4 \
3 \
2 \
\
2r \
\\
. ~_
10° 10° o
Confidence and Accuracy
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EIT.ONR Chernoff Bound
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m Remark: Chernoff bound improves upon other bounds
such as Bernoulli (Law of Large Numbers)

m Dependence on 1/dislogarithmic
m Dependence on 1/¢is quadratic

e 01% | 0.1% | 05% | 0.5%
1-6 | 999% | 99.5% | 99.9% | 99.5%
N |[3.910° | 3.0-106 | 1.6:106 | 1.2-105
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o Computational Complexity of RAs
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m RAsareefficient (polynomial-time) because

1. Random sample generation of A can be performed in
polynomial-time

2. Cost associated with the evaluation of J(A) for fixed
Al'is polynomial-time

3. Sample size is polynomial in the problem size and
probabilistic levels eand &
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m Random number generation (RNG): Linear and
nonlinear methods for uniform generation in [0,1) such
as Fibonacci, feedback shift register, BBS, MT, ...

m Non-uniform univariate random variables. Suitable
functional transformations (e.g., the inversion method)

m The problem is much harder: Multivariate generation of
samples of A with pdf f,(A) and support 8,

m |t can be resolved in polynomial-time
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IENT-CNR 2. Cost Of CheCkI ng Stablllty
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m Consider a polynomial
p(s,a)=a,+as+--+2a,s"
m To check left half plane stability we can use the Routh
test. The number of multiplications needed is

2 n-1

r1—for neven for nodd

m The number of divisions and additions is equal to this
number

m We conclude that checking stability is O(n?)
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3. Bounds on the Sample Size
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m Chernoff bound is independent on the size of 8B,,, on
the structure D on the number of blocks, on the pdf

fA(A)
m It dependsonly on d and €

= Same comments can be made for other bounds such as
Bernoulli

NATO Lecture Series SCI-195 @RT 2008 1

Worst-Case Performance

[  — — i o o o o o |

m Recall that

Jyec = MEXI(4)

m Generate N i.i.d. samples
AL A2 . AN € B,
according to the density f,

= Compute the empirical maximum

Jimax = Max J(A)
i=1,....N

NATO Lecture Series SCI-195 @RT 2008 72
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cron  Worst-Case Bound (Log-over-Log)t!
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m For any £€(0,1) and 6 (0,2), if
N> 1995
logsL

then
Pripr{a(a) > 3y f<ef>1-6

[1] R. Tempo, E. W. Bai and F. Dabbene (1996)
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o Comparison and Comments
[  — — i o o o o o |

m Number of samplesis much smaller than Chernoff

m Bound is a specific instance of the fpras (fully
polynomial randomized approximated scheme) theory

m Dependence on 1/eisbasically linear (Iogize

5 0.1% 0.1% 0.5% 0.5% | 0.01% | 0.001%
1-8 | 99.9% | 99.5% | 99.9% | 99.5% | 99.99% |99.999%
N ]6.91-10%|5.30-103 | 1.38-10° | 1.06:10% | 9.21-10*| 1.16-10°

NATO Lecture Series SCI-195 @RT 2008 7

Volumetric Interpretation
[  — — O —  — i)

m |nthe case of f,(A) uniform, we have

s 1 vol(A,,)
PI'{J(A) > JN}_ Vol(ng )
m Therefore
Pr{Pr{3(a) > 3, J<e}21-6
isequivalent to

Privol(A,, )< evol (B, )}21-6
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Confidence Intervas
[ f —  E— o B — i i n  w a
m The Chernoff and worst-case bounds can be computed a-
priori and provide an explicit functional relation
N =N(g 9)
m The sample size obtained with the confidence intervalsis
not explicit
m Given J(0,1), upper and lower confidence intervals p_

and p, are such th
0 PP, <P, < P j=1-6
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Confidence Intervals - 2
[  — — O —  — i)
m The probabilities p, and p, can be computed a
posteriori when the value of N,y is known, solving
equations of the type

N

N N
> (k]pt(l— p )\ =4,
k=Ngm,

Ngood

> [} ma-nr-a

k=0

with § +8,=6
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Confidence Intervals - 3
[ f — — i o o o o o

T
Ry i 7
B 774
1
9, £
p Z
" 707 /71 n
-
7 %,{‘7’4 +H
Zans
i /,ff T
o. v N
5=005 4777 T
o1 22 f B |
T -+
% o1 02 03 04 05 06 07 08505 0
Estimated Probability pr
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- Statistical Learning Theory

[ e — [ w—  — = n i) |
m The Chernoff Bound studies the problem
Prilp, - pu|<e}21-6
wherep, = Pr{J(4) <y}
m Performance function J is fixed

m Statistical Learning Theory computes bounds on the
sample size for the problem

Pr{Pr(3(A)<y)- py|<eVIe J}21-6
where J isagiven class of functions
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- VC and P-dimension(-2

[ f —  E— o B — i i n  w a

m Statistical Learning Theory aims at studying uniform
Law of Large Numbers

m The bounds obtained depend on quantities called VC-
dimension (if J is a binary valued function), or P-
dimension (if J isacontinuous valued function)

m VC and P-dimension are measures of the problem
complexity

[1] M. Vidyasagar (1997)
[2] ED. Sontag (1998)
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Choice of the Distribution - 1

[ e — [ w—  — = n i) |
m The probability Pr{a € s}
depends on f,(A)

m |t may vary between 0
and 1 depending on the
pdf f,(4)
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Choice of the Distribution - 2

[  — — i o o o o o |

m The bounds discussed are independent on the choice
of the distribution but for computing Pr{J(A) <y} we
need to know the distribution f,(A)

m Some research has been done in order to find the
worst-case distribution in a certain class!

m Uniform distribution is the worst-case if a certain
target is convex and centrally symmetric

[1] B. R. Barmish and C. M. Lagoa (1997)
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Choice of the Distribution - 3

[  — — O —  — i)

= Minimax properties of the uniform distribution have
been studied™

[1] E. W. Ba, R. Tempo and M. Fu (1998)
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IEIT-CNR
[  — — i o o o o o |

Probabilistic Robust Synthesis
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- Analysis vs Design with Uncertainty

[ e — [ w—  — = n i) |
m Starting point: Worst-case analysis versus design
= Consider aninterval family p(s,g), ge 8,={ qe R"|lqll.<1}
m Analysis problem:
— Check if p(s,g) is stable for al ge B,
Answer: Kharitonov Theorem

m Design Problem:
— Does there exist age 8B, such that p(s,q) is stable?
Answer: Unknown in general

NATO Lecture Series SCI-195 @RT 2008 s

EIT-NR Synthesis Paradigm

[  — — i o o o o o |

),

‘Te= 0

m Design the parameterized controller K, to guarantee
stability and performance

d

NATO Lecture Series SCI-195 @RT 2008 86

Synthesis Performance Function

[  — — O —  — i)
m Recall that the parameterized controller is K,

m We replace J(A) with a synthesis performance function

J=J(A0)

where 68 € O represents the controller parameters to be
determined and their bounding set
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e RANdomized Algorithms for Synthesis
[ f —  E— o B — i i n  w a
m Two classes of RAsfor probabilistic synthesis

= Average performance synthesig!l

m Based on expected value minimization

m Use of Statistical Learning Theory results
m Very genera problems can be handled

m Existing bounds are very conservative and controller
randomization is required

m Ongoing research aiming at major reduction of sample
size
[1] M. Vidyasagar (1998)
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rew  Randomized Algorithms for Synthesis
[  — — O —  — i)
= Robust performance synthesigl

m Problem reformulation as robust feasibility
m Only convex problems can be handled
m Finite-time convergence with probability one is obtained

[1]B. Polyak and R. Tempo (2001)
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Robust Performance Synthesis

[  — — i o o o o o |

m Uncertainty randomization of A in B8,
m Convex optimization to design the controller K(s)

=]
_

d P ( S) e
” ]
K(s)
NATO Lecture Series SCI-195 @RT 2008 90
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IENIT-CNR

[  — — O —  — i)

RAsfor Optimal Control (LQR)

@RT 2008 91

NATO Lecture Series SCI-195

Uncertain Systems in State Space

f —  E— o B — i i n  w a
m We consider a state space description of the uncertain
system

IENT-CNR

X(t) = A(A)X(t) + Bu(t)

with x(0)=x,; XeR™ ueR™ Ae B,
m For example, A(A) is an interval matrix with bounded

entries a; <a; <a
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Interval and Vertex Matrices
| S — O e I — Y

= We consider interval uncertainty A (i.e. when ae 8,))

IEIIT-CNR

m That is, a, rangesin theinterval for all i, k
|3 - @ 1< Wy
where g, are nominal values and w;, are weights
m Definethe N = 2% vertex matrices AL, A2,..., AN
A =ay Wy or &y =ay -W
fordli k=12, ...,n

Common Lyapunov Functions

IEIT-CNR
 — — i o o o o o |

m Given matrices A*, W and feedback K, find a common
quadratic Lyapunov function Q > O for the system
Xt)=(A+BK) x(t) foradl Ae A
m Find Q> 0 such that
L(Q, A) = (A+BK)TQ+ Q (A+BK) <0 foradl Ae A
m Equivaently, find Q > 0 such that
Aok L(Q, A) <0 fordl Ae A

@RT 2008
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NATO Lecture Series SCI-195

Lyapunov Stability of Interval Systems

e — [ w—  — = n i) |

m Quadratic Lyapunov stability analysis and synthesis of
interval systems are NP-hard problems

m |n principle, they can be solved in one-shot with convex
optimization, but the number of constraints is

IEIIT-CNR

exponential
m We can use relaxation (eg. w2 TheoremlY) or
randomization

[1] Yu. Nesterov (1997)

@RT 2008 95
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Vertex Solution
) — — O — .y |

m Due to convexity, it suffices to study L(Q, A) < O for
all vertex matricedt

m Question: Do we really need to check all the vertex
matrices (N = 209)?

IENT-CNR

[1] H.P. Horisberger, P.R. Belanger (1976)

NATO Lecture Series SCI-195 @RT 2008
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TR Vertex Reduction

[ e — [ w—  — = n i) |

m Answer: It suffices to check “only” a subset of 22
vertex matrices!!

m Thisis gtill exponential (the problem is NP-hard), but
it leads to a major computational improvement for
medium size problems (e.g. n = 8 or 10)

m For example, for n=8, N is of the order 10° (instead of
1019)

[1] T. Alamo, R. Tempo, D. Rodriguez, E.F. Camacho (2007)

NATO Lecture Series SCI-195 @RT 2008 7

e Diagonal Matrices and Generaizations

[ f —  E— o B — i i n  w a
m Transform the original problem from full square
matrices A to diagonal matricesZ e R2v2n

m |t suffices to check the vertices of Z

m Extensions for L,-gain minimization and other related
LMI problems

m Generalizations for multiaffine interval systems

NATO Lecture Series SCI-195 @RT 2008 98

rom Las Vegas Randomized Algorithm

[ e — [ w—  — = n i) |
= We may perform randomization of the N = 27 vertices
(in the worst case)

m |f we select the vertices in random order according to a
given pdf, we haveaLVRA
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Probabilistic Solution

[ f —  E— o B — i i n  w a
m Randomly generate Al,..., AN. Then, check if the
Lyapunov eguation
AQ+ QA) <0
is feasible for i=1,...,N and find a common solution
Q=Q">0
m Critical problem: Even if N is relatively smdll, thisis a
hard computational problem
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Sequentia Algorithm

[ e — [ w—  — = n i) |
m Key point: Sequentia algorithm which deals with one
constraint at each step

m At step k we have
Phase 1: Uncertainty randomization of A
Phase 2: Gradient algorithm and projection

m Fina result: Find a solution Q=QT >0 with probability
onein afinite number of steps
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IENIT-CNR Defl n|t|0n
[  — E— — — — o
m Let & be an Euclidean space

&, ={A: A eR"|A= Zafk}

ik=1

and C be the cone of positive semi-definite matrices

c={Ac &,:A>0}

NATO Lecture Series SCI-195 @RT 2008 102
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IT-CNR Projection on a Cone

[ e — [ w—  — = n i) |
m For any real symmetric matrix A we define the
projection [A]*e C as

't — i _
[Al = argmin|A- X

m The projection can be computed through the eigenvalue
decomposition A=TATT
m Then
(A =TAT
where A;*=max {A; ,0}
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- Phase 1: Uncertainty Randomization

[ f —  E— o B — i i n  w a
m Uncertainty randomization: Generate Ake B,

m Then, for guaranteed cost we obtain the Lyapunov
equation

A(AQ+QAT (A <0
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Matrix Vaued Function

[ I E— — — — -y il
m Define amatrix valued function

V(QA)=A&)Q+QA(A)

and a scalar function
QA9 =| M@Qal'|
where || - || is the Frobenius norm
= We can also take the maximum eigenvalue of V(Q,AX)
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onR Phase 2: Gradient Algorithm

[ ) I I— — O — — o w aj}
n Wewrite

. {[Q" — 19 MQE AN if V(@4 A)> 0

Q- otherwise

where 9, is the subgradient and the stepsize u< is

o VQ &)+ r]ag QA
o Al

and r>0 is a parameter
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Closed-form Gradient Computation

[ e — [ w—  — = n i) |
m The function v(Q,A¥) is convex in Q and its subgradient
can be easily computed in a closed form
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IENT-CNR Thmrern[l]
[ f —  E— o B — i i n  w a
m Assumption: Every open subset of 8B,, has positive
measure
m Theorem: A solution Q, if it exists, is found in a finite
number of steps with probability one
m |dea of proof: The distance of QK from the solution set
decreases at each correction step

[1] B.T. Polyak and R. Tempo (2001)
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IEIIT-CNR EXarT]pIdl]
[ I E— — — — -y il
m We study a multivariable example for the design of a
controller for the lateral motion of an aircraft.

m The model consists of four states and two inputs

0o 1 0 0 0 0
0 L L L 0 -391
X(t) = > ’ T X+ u(t
® % 0 Y, 1 PO g0 o MO
NA(%) Np Ng+NgY, N -Ng -253 031

[1] B.D.O. Anderson and J.B. Moore (1971)
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IENT-CNR Exarnpl e-2

[ ) I I— — O — — o w aj}
m The state variables are

— X, bank angle
— X, derivative of bank angle
— X3 Sidedlip angle
— X, jaw rate
m The control inputs are
— Uy rudder deflection
— U, aileron deflection

NATO Lecture Series SCI-195 @RT 2008 110

IEIIT-CNR EXarane - 3

[ e — [ w—  — = n i) |

= Nomina  values: L,=293, Lg=475 L=0.78,
g/V=0.086, Yz=-0.11, N3=0.1, N_=-0.042, N;=2.601,
N,=-0.29

m Perturbed matrix A(A): each parameter can take valuesin
arange of +15% of the nominal value

m Quadratic stability (y=0): take R=I and S=0.01I

m Remark: A(A) is multiaffine in the uncertain parameters:

IENT-CNR Exarnpl e - 4
[ f —  E— o B — i i n  w a
m Sequential algorithm:
— Initial point Q, randomly selected
— 800 random matrices Ak
— The agorithm converged to

0.7560 -0.0843 0.1645 0.7338
_|-0.0843 1.0927 0.7020 0.4452

quadratic ~ stability can be ascertained solving Q= 0.1645 0.7020 0.7798 0.7382
simultaneously 2°=512 LMIs 07338 04452 0.7382 12162
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IEIT-CNR Exarnple - 5 IEIIT-CNR

[ I E— — — — -y il [ ) I I— — O — — o w aj}

m The corresponding controller
K=B'Ql= 38.6191 -4.3731 43.1284 -49.9587

- "|-2.8814 -10.1758 10.2370 -0.4954

satisfies all the 512 vertex LMIs and thereforeit isalso a
quadratic stabilizing controller in a deterministic sense .

m The optimal LQ controller computed on the nominal Extensions
plant satisfies only 240 vertex LMIs
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Related Literature and Extensions

IENIT-CNR

 — — O —  — i)

m  Minimization of a measure of violation for problems
that are not strictly feasiblelt]
= Uncertainty in the control matrix, B=B(A), Ae B,,
We take the feedback law
u=YQ'x
where Y and Q=QT >0 are design variables

[1] B.R. Barmish and P. Shcherbakov (1999)
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o Related Literature

[ f —  E— o B — i i n  w a

m Related literature on optimization and adaptive control
with linear constraintg.234

m Stochastic approximation algorithms have been widely
studied in the stochastic control and optimization
literaturel6.71

[1] S. Agmon (1954)

[2] T.S. Motzkin and 1.J. Schoenberg (1954)

[3] B.T. Polyak (1964)

[4] V.A. Bondarko and V.A. Y akubovich (1992)

[6] H.3. Kushner and G.G. Yin (2003)
[7] 3.C. Spall (2003)
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Subsequent Research

IEIIT-CNR

 — — O —  — i)

m Design of common Lyapunov functions for switched
systemd !

= From common to piecewise Lyapunov functiong?

m Ellipsoida algorithm instead of gradient algorithml®!

m Stopping rule which provides the number of steps4l

= Other agorithms have been recently proposed!>-l

[1] D. Liberzon and R. Tempo (2004)

[2] H. Ishii, T. Basar and R. Tempo (2005)

[3] S. Kanev, B. De Schutter and M. Verhaegen (2002)

[4] Y. Oishi and H. Kimura (2003)

[5] Y. Fujisski and Y . Oishi (2007)

[6] T. Alamo, R. Tempo, D. R. Ramirez and E. F. Camacho (2007)
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- Optimization Problemg!!
[  — — i o o o o o |

m Extensions to optimization problems

m Consider convex function f(x) and function g(x.4)
convex in x for fixed 4

m Semi-infinite (nonlinear) programming problem
min f(x)
gx.4) <Oforal de 8
m Reformulation as stochastic optimization
m Drawback: Convergence results are only asymptotic

[4] V. B. Tadic, S. P. Meyn and R. Tempo (2003)
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IEIIT-CNR &:er]ario Appromh
\ ) e s s

m The scenario approach for convex problemd!

m Non-sequential  method which provides a one-shot
solution for general convex problems

m Randomization of A e 8B and solution of a single convex
optimization problem

m Derivation of a bound on the sample sizell

= A new improved bound based on a pack-based strategy(?

[1] G. Calafiore and M. Campi (2004)
[2] T. Alamo, R. Tempo and E.F. Camacho (2007)
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o Convex Semi-Infinite Optimization
[  — — i o o o o o |

m The semi-infinite optimization problemis

minc’@ subjectto f(6, 4) <0 foral de B

where f(0, 4) <0Oisconvexindforal 4e 8

m We assume that this problem is either unfeasible or, if
feasible, it attains a unique solution for all 4 € B (this
assumption is technical and may be removed)

m Weassumethat ¢ ® C R"
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EIT.ONR Scenario Problem

[  — — O —  — i)
m Using randomization, we construct a scenario problem

m Taking random samples 4,i = 1, 2, ..., N, we construct
f(0, 4)<0, i=1,2,...,N

and

minc’d subjectto f(9, 4)<0, i=1,2,...,N

NATO Lecture Series SCI-195 @RT 2008 o1

IEI\T-CI\;R Tha)rern[l]

[  — — i o o o o o |
m Theorem: For any £€(0,1) and 5€(0,1), if

N > [2/e log(1/é) + 2n+ 2n/e log (&) |
then, with probability no smaller than 1- &
- either the scenario problem is unfeasible and then also
the semi-infinite optimization problem is unfeasible
- or, theAscenario problem is feasible, then its optimal
solution g, satisfies
Pr{ 4e 8:16,4>0}<¢

[1] G. Calafiore and M. Campi (2004)
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A New Improved Bound!™
[ e — [ w—  — = n i) |
m A new improved bound (based on a so-called pack-
based strategy) has been recently obtained

N > [2/e log(1/26) +2n + 2n/e log 4 |

IEIIT-CNR

IEIT-CNR
[  — — i o o o o o |

m The main difference with the previous bound is that the
factor RA CT
2n/e log (2/¢)
isreplaced with
2n/e log 4
[1] T. Alamo, R. Tempo and E.F. Camacho (2007)
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RACT RACT

IENT-CNR
[  — — O —  — i)

m RACT: Randomized Algorithms Control Toolbox for
Matlab

m RACT has been developed at IEIIT-CNR and at the
Institute for Control Sciences-RAS, based on a bilateral
international project

m Members of the project
Andrey Tremba (Main Developer and Maintainer)
Giuseppe Calafiore
Fabrizio Dabbene
Elena Gryazina
Boris Polyak (Co-Principal Investigator)
Pavel Shcherbakov
Roberto Tempo (Co-Principal Investigator)
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IEIT-CNR
[  — — i o o o o o |

m Main features

m Define a variety of uncertain objects: scalar, vector and
matrix uncertainties, with different pdfs

m Easy and fast sampling of uncertain objects of amost
any type

m Randomized algorithms for probabilistic performance
verification and probabilistic worst-case performance

m Randomized algorithms for feasibility of uncertain LMIs
using stochastic gradient, elipsoid or cutting plane
methods (Y ALMIP needed)
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[ I — — —  —  — -

Applications of Randomized
Algorithms
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Application of RAs

IENT-CNR

 — — i o o o o o |

m Randomized agorithms have been developed for
various specific applications

m Control of flexible structures

m Stability and robustness of high speed networks
m Stability of quantized sampled-data systems

m Brushless DC motors

m Control design of Mini UAV
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IENT-CNR
[  — — O —  — i)

Probabilistic Control of
Mini-UAVSY

[4] L. Lorefice, B. Pralio and R. Tempo (2007)

NATO Lecture Series SCI-195 @RT 2008 129

Italian National Project
for Fire Prevention

IENT-CNR

 — — i o o o o o |

m  This activity is supported by the Italian Ministry for
Research within the National Project
Sudy and development of a real-time land control and
monitoring system for fire prevention
m  Five research groups are involved together with a
government agency for fire surveillance and patrol
located in Sicily
m The aerid platform is based on the MicroHawk
configuration, developed at the Aerospace Engineering
Department, Politecnico di Torino, Italy
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EIT-ONR MH1000 Platform - 1

[ I E— — — — -y il
m Platform features

- wingspan 3.28 ft (1 m)
- total weight 3.3 b (1.5 kg)
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IENT-CNR M H 1000 PI aform = 2

[ f —  E— o B — i i n  w a
m Main on-board equipment
- various sensors and two cameras (color and infrared)
DC motor
Remote piloting and autonomous flight
Flight endurance of about 40 min
Flight envelope
- min/max velocity: 33 ft/s (10 m/s) — 66 ft/s (17 m/s)
- average velocity: 43 ft/s (14 m/s)
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o Flight Envelope (Limits)

[ e — [ w— f — = n i) |
Wing loading effect = total weight Aerodynamic constraint (red) = minimum flight
ing loading effect > total weig| speed (s(all effect)

Propulsive constraint (blu) - maximum flight
speed

Propeller sizing effect

velocity: 33 ft/s (10 m/s) — 66 ft/s (17 m/s)

NATO Lecture Series SCI-195 @RT 2008 [ER)

: Basic on-board Systems

[  — — i o o o o o |

DC motor: Hacker B20-15L (4:1) receiver: Schulze Alpha840W
= weight: 589 = weight: 1359

= dimensions: @ 20 x 40 mm = dimensions: 52 X 21 X 13 mm
= Kv: 3700 rpm/volt = 8 channels

controller: Hacker Master Series 18-B-Flight servo: Graupner C1081 (2x)

= weight: 219 = weight: 139

» dimensions: 33 X 23 X 7 mm = dimensions: 23 X 9 X 21 mm
= current drain: 18 A = torque: 12 Nem

battery: Kokam 2000HD (3x)

= weight: 160 g

= dimensions: 79 X 42 X 25 mm
= capacity: 2000 mAh
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Prototype Manufacturing - 1
\‘EWCNR e — [ w—  — = n i) |

carbon fiber
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Prototype Manufacturing - 2
\IE”TVCNR f —  E— o B — i i n  w a

working nsrmens
__Immg surfaces outline

fuselage reference
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Prototype Manufacturing - 3

[  — — O —  — i)

prototype
easy construction

rapid manufacturing
bad mode! reproducibility
inaccurate geometry
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IENT-CNR Sae %ace M Odd

[  — — i o o o o o |
m State space formulation obtained by linearization of the
full (12 coupled nonlinear ODE) model

X(t) = A(A) x(t) + B(A) u(t)
u(t) =- Kx(t)

where x = [V, o, q, 47 (V flight speed, o angle of
attack, g and @ pitch rate and angle), A uncertainty
m Consider longitudinal plane dynamics stabilization

m Control u isthe symmetrical elevon deflection
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Uncertainty Description - 1

IENIT-CNR

 — — O —  — i)

m We consider structured parameter uncertainties affecting
plant and flight conditions, and aerodynamic database

m Uncertainty vector A =[4,,..., gl where g€ [4, &']

m Key point: There is no explicit relation between state
space matrices A and B and uncertainty A

m Thisisdueto the fact that state space system is obtained
through linearization and off-line flight simulator

m The only techniques which could be used in this case are
simulation-based which lead to randomized algorithms

NATO Lecture Series SCI-195 @RT 2008 1%

o Uncertainty Description - 2
[ f —  E— o B — i i n  w a

= We consider random uncertainty A =[4,,..., Sl T

m The pdf is ether uniform (for plant and flight
conditions) or Gaussian (for aerodynamic database
uncertainties)

m Flight conditions uncertainties need to take into account
large variations on physical parameters

m Uncertainties for aerodynamic data are related to
experimental measurement or round-off errors
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Plant and Flight Condition Uncertainties

IEIIT-CNR

 — — O —  — i)

parameter pdf | & % Py 8 #
flight speed [ft/s] U [4265 |+15 [3625 |4905 |1
altitude [ft] U |16404 |+100 |0 32808 (2
mass [Ib] U |331 +10 |[2.98 3.64 3
wingspan [ft] U [328 +5 (312 344 |4
mean aero chord [ft] U 175 +5 1.67 1.85 5
wing surface [t?] U (561 +10 |5.06 6.18 6
moment of inertia[lbft?] (U |1.34 +10 [1.21 1.48 7
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wren  Aerodynamic Database Uncertainties
[  — — i o o o o o |

parameter | pdf g [

c [ G 001215 |000040 |8
C, [ G 030651 | 000500 |9
B G 002401 | 000040 |10
Cylradl] [G 020435 | 000650 |11
Cy [rad?] |G -1.49462 0.05000 12
Crng [radl] |G -0.76882 0.01000 13
Cy [radl] |G -0.17072 0.00540 14
C, [rad] |G 141136 | 002200 |15
C,[rad?] |G -0.94853 0.01500 16
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Standard Deviation and Velocity
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Standard deviation is experimentally computed from the vel ocity
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Critical Parameters and Matrices
[ f —  E— o B — i i n  w a
m We select flight speed (4;) and take off mass (J;) as
critical parameters
m Flight speed is taken as critical parameter to optimize
gain scheduling issues
m Take off mass is a key parameter in mission profile
definition
m We define critical matrices
At AZ A® A* B! BZ B® B!
m They are constructed setting d,, d;to the extreme values
oy, 6,565, &+ and al theremaining &§ areequal to &
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Phase 1. Random Gain Synthesis (RGS)

IENIT-CNR
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m Critical parameters are flight speed and take off mass
m Specification property
S, ={K: A, — B.K satisfies the specs below}

g €[4.0,6.0] radis
o €[0.1,0.3]

4ee[05,09]
Awg <+ 45%

Wy €[1.0,1.5] rad/s
Ay < = 20%

where @ and ¢ are undamped natural frequency and
damping ratio of the characteristic modes; & and oy
denote short period and phugoid mode

NATO Lecture Series SCI-195 @RT 2008 5

Volume of the Good Set

IEIIT-CNR
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m Define abounding set B of gains K
B={K: k €[k k], i=1,...,4}
m Define the volume of the good set
Vol = Jy dK
whereA={KeBnS, }
m Vol issimply the volume of the hyperrectangle B

Specs in the Complex Plane

IENT-CNR

 — — i o o o o o |

NATO Lecture Series SCI-195 @RT 2008 146

Randomized Algorithm 1 (RGS)

IENT-CNR

 — — i o o o o o |

= Uniform pdf for controller
gainsK in given intervals

m Accuracy and confidence
€=4-10%and § =3 -10*

= Number of random
samples is computed with
“Log-over-Log” Bound
obtaining N = 200,000

m Weobtained 5 gains Ki
satisfying specification

property S;
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rom Randomized Algorithm 1 (RGS) o Random Gain Set
[ O aogonn [ f —  E— o B — i i n  w a

Given ¢, § € (0,1), RGS returns the set of gains {K?,...,K$}
satisfying S;
1. Compute N using the Log-over-log Bound; ganset | Ky Ky Ky Ko
2. For fixed j=12,...,N, generate uniformly the gain random matrix Ki e B; K1 0.00044023 | 0.09465000 |0.01577400 |-0.00473510
3. Set C=0;
4. For fixed i=1,2,3,4, compute the closed-loop matrix K2 0.00021450 |0.09581200 |0.01555500 |-0.00323510
Ay(K) = Al - B K
-ifKie S, set C=C+1; K3 0.00054999 | 0.09430800 |0.01548200 |-0.00486340
- otherwise, set C=C;
5 End; K4 0.00010855 | 0.09183200 |0.01530000 |-0.00404380
6. If C=4, return the gain Kj;
7. :et dJ =j+Llandreturnto Step 2; K5 0.00039238 | 0.09482700 |0.01609300 |-0.00417340
s En
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Phase 2: Random Stability Robustness
Analysis (RSRA)
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m TakeK,,,q = K obtained in Phase 1
m Randomize A according to the given pdf and take N

random samples Al
m Specification property
S,={A: A(A) —B(A) K,ang Satisfies the specs of S;}

m Computation of the empirical probability of stability Py,

NATO Lecture Series SCI-195 @RT 2008 51

o Empirical Probability
\ ) | s s o s s
= Consider fixed gain K 4
m Define the probability
Pree =k P(A)dA
whereC ={AeBnS,} and p(4) is the given pdf
m Then, weintroduce a*“success’ indicator function
1(A)=1ifAleS,
or 1(A)) = 0 otherwise
m Theempirical probability for S,is given by
pN = Ngood/N
where Nyooq iS equal to the number of successes

NATO Lecture Series SCI-195 @RT 2008 152

Randomized Algorithm 2 (RSRA)

IEIIT-CNR
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m TakeK,,, from Phase 1
= Accuracy and confidence
€= 0=0.0145

= Number of random
samples is computed with
Chernoff Bound obtaining
N =5,000

= Empirical probability is
defined using an indicator

o Randomized Algorithm 2 (RSRA)
\ ) | s s o s s
Giveng, de (0,1), RSRA returns the empirical probability Py
that S, is satisfied for a gain K4 provided by Algorithm 1

-

. Compute N using the Chernoff Bound,;
. Generate N random vectors Al e B according to the given pdf;
. For fixed j=1,2,...,N, compute the closed-loop matrix
_ Aqg(d) = A@) - BANK ang;
-if Ay(A) € S,, set I(Al) = 1;
- otherwise, set 1(A)) = 0;
4. End;

w N

function 5. Return the empirical probability Py
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Empirical Probability of Stability
e for Phase 2 N Probability Degradation Function
[ e — [ w—  — = n i) | [ f —  E— o I — i i n w a
m Flight condition uncertainties are multiplied by the
amplification factor p > 0 keeping the nominal value
gain set empirical probability constant
KL 88.56% sdepld, s8] fori=1,2,...,7
K2 90.60% = No uncertai ntyiarfects the aerpdynamm database, i.e.
=& fori=8,9,...,16
K3 89.31% m For fixed pe[0,1.5] we compute the empirical
KA 93.86% probability for different gain setsK'
m The plot empirical probability vs p is the probability
K® 85.14% degradation function
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Probability Degradation Function
for Phase 2

Root Locus Plot for Phase 2
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Phase 3: Random Performance
Robustness Analysis (RPRA)

[ e — [ w—  w— = i n i |
m Thisphaseis similar to Phase 2, but military specs are
considered (bandwidth criterion)

m Specification property
S;={A: A(A) —B(A) K, g Satisfies the specs below}

@y €[2.5,5.0] rad/s %,€[0.0,05] s

where @y, and 7, are bandwidth and phase delay of the
frequency response

m Computation of the empirical probability that S; is
satisfied
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\ s s s o i
Root locus for K2 (left) and K# (right)
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N Bandwidth Criterion
\ s s s o i
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e Randomized Algorithm 3 (RPRA)

[  — — O —  — i)

m TakeK,,qfrom Phase 1

m Numer of random samples
is computed with the
Chernoff Bound obtaining
N =5,000

= Empirical probability is
defined using an indicator
function
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o Randomized Algorithm 3 (RPRA)

[ ) | s s o s s
Given N and Ay(A), j=1,2,...,N, provided by Algorithm 2, RPRA
returns the empirical probability Py, that S, is satisfied for a gain
Kiang Provided by Algorithm 1

1. Forfixedj=12,...,N
-if Ag(Al) € Sy, set 1(A) =1,
- otherwise, set 1(A)) = 0;
2. End;
3. Return the empirical probability Py
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Empirical Probability of Performance
for Phase 3
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gain set empirical probability
K1 93.58%
K2 95.16%
K3 90.80%
K4 84.78%
K5 96.06%
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Bandwidth Criterion for Phase 3
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Bandwidth criterion for K (left) and K3 (right)
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Probability Degradation Function
for Phase 3
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IENT-CNR Gai n %I a:ti On

[  — — i o o o o o |
m Multi-objective criterion as a compromise between
different specifications

Finally we selected gain K? as the best compromise
between all the specs and criterial
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wrew  Conclusions: Flight Testsin Sicily - 1

[ e — [ w—  — = n i) |
m Evaluation of the payload carrying capabilities and
autonomous flight performance

m Mission test involving altitude, velocity and heading
changing was performed in Sicily
m Checking effectiveness of the control laws for

longitudinal and lateral-directional dynamics

m Flight control design based on RAs for stabilization and
guidance
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e CoONclusions: Flight Testsin Sicily - 2

[  — — i o o o o o |
m Satisfactory response of MH1000

m Possible improvements by iterative design procedure

m Stability of the platform is crucial for the video quality
and in the effectiveness of the survelllance and
monitoring tasks
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Color Camera: Right Turn

Color Camera: Landing Phase
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Infrared Camera- 1 Infrared Camera - 1
[  — — O —  — i) [  — — i o o o o o |
road
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Infrared Camera - 1 Infrared Camera - 1
[  — — O —  — i) [  — — i o o o o o |
car
road road
shed shed
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Infrared Camera- 1
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car

\ —_
water

. Infrared Camera - 2
[ ) — — O — .y |

shed
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Infrared Camera - 3 Acknowledgment
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IENT-CNR
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Conclusions
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IENT-CNR PAC A I gori thms

[ f —  E— o B — i i n  w a
m Randomized algorithms are Probably Approximately

Correct (PAC)

m We give up a guaranteed deterministic solution

m Thisimplies accepting a“small” risk of giving a wrong
solution

m The risk can be made arbitrarily small (but not zero)
taking suitable values of so-called confidence and
accuracy
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- PAC Algorithms

[ e — [ w—  — = n i) |
m Two open problems

m Optimization with sequential methods

m Derive “reasonable’” bounds for the statistical learning
theory approach
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